
Branch- BCA
6th Semester

Unit-1

Java: Uses of Objects

Subject-Internet Technology

Content

Uses of Objects

Array

Array List

Types of Array

Advantages of array

Disadvantages of Array

Applications of Array

Java: Use of Objects

• An entity that has state and behavior is known as an object e.g., chair,
bike, marker, pen, table, car, etc. It can be physical or logical (tangible and
intangible).

• It is used to write, so writing is its behavior. An object is an instance of a
class. A class is a template or blueprint from which objects are created. So,
an object is the instance(result) of a class.

• Generally Object should only be used when dealing with a collection of
elements of disparate or unknown type.

• This then usually is followed by instance of and cast statements. Many
APIs return Object when then can provide disparate types and some of
this is a holdover from Java 4 and older prior to generics.

• An object stores its state in fields (variables in some programming
languages) and exposes its behavior through methods.

Array and Array List

Array
• An Array is a Linear data structure which is a collection of data items

having similar data types stored in contiguous memory locations. By
knowing the address of the first item we can easily access all
items/elements of an array. Array index starts from 0.

• There are three different kinds of arrays: indexed arrays,
multidimensional arrays, and associative arrays.

Indexed Array

• An indexed array is a simple array in which data elements are stored
against numeric indexes. All the array elements are represented by
an index which is a numeric value starting from 0 for the
first array element.

• Indexed arrays are used when you identify things by their position.

Multidimensional Array

• Multidimensional arrays use one set of square brackets per dimension or
axis of the array.

• For example, a table which has two dimensions would use two sets of
square brackets to define the array variable and two sets of square
brackets for the index operators to access the members of the array.

• 2-dimensional arrays are the most commonly used. They are used to store
data in a tabular manner.

• Multidimensional Arrays can be defined in simple words
as array of arrays. Data in multidimensional arrays are stored in tabular
form (in row major order).

Associative Arrays

• Associative arrays, also called maps or dictionaries, are an abstract data
type that can hold data in (key, value) pairs.

• An associative array is an array with string keys rather than numeric keys.
For example: var arrAssociative = { "Company Name": 'Flexible', "ID": 123
}; var arrNormal = ["Flexible", 123]; Here, the keys of the associative array
are “Company Name” & “ID” whereas in the normal array. The keys or
index is 0 & 1.

• An associative array is a collection of unique keys and collections of values
where each key is associated with one value.

• An associate array is an abstract data type like a map that is composed of
a (key, value) pair, such that each key-value appears at most once in the
collection

Array List
• An Array List class is a resizable array, which is present in the java. until

package.

• While built-in arrays have a fixed size, Array Lists can change their size
dynamically.

• Elements can be added and removed from an Array List whenever there

is a need, helping the user with memory management.
• Array List internally uses an array to store the elements. Just like arrays, It

allows you to retrieve the elements by their index.

• Java Array List class uses a dynamic array for storing the elements. It is like
an array, but there is no size limit. We can add or remove elements
anytime.

Advantages of Array
• In an array, accessing an element is very easy by using the index

number.

• The search process can be applied to an array easily.

• 2D Array is used to represent matrices.

• For any reason a user wishes to store multiple values of similar type
then the Array can be used and utilized efficiently.

• Arrays represent multiple data items of the same type using a single
name.

• In arrays, the elements can be accessed randomly by using the
index number.

• Arrays allocate memory in contiguous memory locations for all its
elements.

Disadvantage of Array
• The number of elements to be stored in an array should be known in

advance.

• An array is a static structure (which means the array is of fixed size). Once
declared the size of the array cannot be modified. The memory which is
allocated to it cannot be increased or decreased.

• Insertion and deletion are quite difficult in an array as the elements are
stored in consecutive memory locations and the shifting operation is
costly.

• Allocating more memory than the requirement leads to wastage of
memory space and less allocation of memory also leads to a problem.

Applications of Arrays
• Array stores data elements of the same data type.

• Maintains multiple variable names using a single name. Arrays help to
maintain large data under a single variable name. This avoid the confusion
of using multiple variables.

• Arrays can be used for sorting data elements. Different sorting techniques
like Bubble sort, Insertion sort, Selection sort etc use arrays to store and
sort elements easily.

• Arrays can be used for performing matrix operations. Many databases,
small and large, consist of one-dimensional and two-dimensional arrays
whose elements are records.

• Arrays can be used for CPU scheduling.
• Lastly, arrays are also used to implement other data structures like Stacks,

Queues, Heaps, Hash tables etc.

Unit-2

JavaScript

Content

Data Types

Operators

Functions

Control Structure

Events and Events Handling

JavaScript: Data Types

• JavaScript variables can hold different data types: numbers, strings,
objects and more:

• let length = 16; // Number
let lastName = "Johnson"; // String
let x = {firstName:"John", lastName:"Doe"}; // Object

• In programming, data types is an important concept.

• To be able to operate on variables, it is important to know something
about the type.

• Without data types, a computer cannot safely solve this:

• let x = 16 + "Volvo";

•JavaScript has dynamic types. This means that the same variable can be used to
hold different data types:

Example
let x; // Now x is undefined
x = 5; // Now x is a Number
x = "John"; // Now x is a String

• JavaScript has dynamic types. This means that the same variable can be used
to hold different data types:

Example
let x; // Now x is undefined
x = 5; // Now x is a Number
x = "John"; // Now x is a String

• JavaScript has only one type of numbers.
Numbers can be written with, or without decimals:
Example
let x1 = 34.00; // Written with decimals
let x2 = 34; // Written without decimals

• Booleans can only have two values: true or false.
Example
let x = 5;
let y = 5;
let z = 6;
(x == y) // Returns true
(x == z) // Returns false

• JavaScript arrays are written with square brackets.
Array items are separated by commas.
The following code declares (creates) an array called cars, containing three items (car
names):
Example
const cars = ["Saab", "Volvo", "BMW"];

Operators
Different Types of operators Are:-

The assignment operator (=) assigns a value to a variable.
Assignment
let x = 10;

• The addition operator (+) adds numbers:
Adding
let x = 5;
let y = 2;
let z = x + y;

The multiplication operator (*) multiplies numbers.
• Multiplying
• let x = 5;

let y = 2;
let z = x * y;

Operator Description

+ Addition

- Subtraction

* Multiplication

** Exponentiation (ES2016)

/ Division

% Modulus (Division Remainder)

++ Increment

-- Decrement

Arithmetic operators are used to perform arithmetic
on numbers:

https://www.w3schools.com/js/js_2016.asp

Operator Example Same As

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

**= x **= y x = x ** y

JavaScript Assignment Operators
Assignment operators assign values to JavaScript variables.

• The + operator can also be used to add (concatenate) strings

let text1 = "John";

let text2 = "Doe";

let text3 = text1 + " " + text2;

The result of txt3 will be:

• John Doe

The += assignment operator can also be used to add (concatenate) strings:

Example

Let, text1 = "What a very ";
text1 += "nice day";

The result of txt1 will be:

• What a very nice day

Adding Strings and Numbers
• Adding two numbers, will return the sum, but adding a number and

a string will return a string:

• Example

• let x = 5 + 5;
let y = "5" + 5;
let z = "Hello" + 5;

• The result of x, y, and z will be:

• 10
55
Hello5

Functions

• A JavaScript function is a block of code designed to perform a particular
task.

• A JavaScript function is executed when "something" invokes it (calls it).

• Example

• function my Function(p1, p2) {
return p1 * p2; // The function returns the product of p1 and p2

}

JavaScript Function Syntax
• A JavaScript function is defined with the function keyword, followed by

a name, followed by parentheses ().

• Function names can contain letters, digits, underscores, and dollar signs
(same rules as variables).

• The parentheses may include parameter names separated by commas:
(parameter1, parameter2, ...)

• The code to be executed, by the function, is placed inside curly brackets: {}

• Function parameters are listed inside the parentheses () in the function
definition.
• Function arguments are the values received by the function when it is
invoked.

• Inside the function, the arguments (the parameters) behave as local
variables.

Function Invocation
The code inside the function will execute when "something" invokes (calls)
the function:
When an event occurs (when a user clicks a button)
When it is invoked (called) from JavaScript code
Automatically (self invoked)

Function Return

• When JavaScript reaches a return statement, the function will stop executing.

• If the function was invoked from a statement, JavaScript will "return" to
execute the code after the invoking statement.
• Functions often compute a return value. The return value is "returned" back
to the "caller":

Example
Calculate the product of two numbers, and return the result:
let x = my Function(4, 3); // Function is called, return value will end up in x

function my Function(a, b) {
return a *b; // Function returns the product of a and b

}

The result in x will be:
12

Functions Used as Variable Values

Functions can be used the same way as you use variables, in all types of
formulas, assignments, and calculations.

Example
Instead of using a variable to store the return value of a function:
let x = toCelsius(77);
let text = "The temperature is " + x + " Celsius";
You can use the function directly, as a variable value:
let text = "The temperature is " + toCelsius(77) + " Celsius";

Local Variables

• Variables declared within a JavaScript function, become LOCAL to the
function.

• Local variables can only be accessed from within the function.
• Example
• // code here can NOT use car Name

function my Function() {
let car Name = "Volvo";
// code here CAN use car Name

}

// code here can NOT use car Name

• Since local variables are only recognized inside their functions, variables
with the same name can be used in different functions.

• Local variables are created when a function starts, and deleted when the
function is completed.

Control Structure
• Control Structures are just a way to specify flow of control in programs. ...

It basically analyzes and chooses in which direction a program flows based
on certain parameters or conditions.

• The three basic types of control structures are sequential, selection and
iteration.

Sequential: default mode.

Selection: used for decisions, branching -- choosing between 2 or more
alternative paths.

Repetition: used for looping, i.e. repeating a piece of code multiple times in a
row.

Advantages of Control structure

• The conditional IF-THEN or IF-THEN-ELSE control structure allows a program
to follow alternative paths of execution.

• Iteration, or looping, gives computers much of their power.

• They can repeat a sequence of steps as often as necessary, and appropriate
repetitions of quite simple steps can solve complex problems.

Disadvantages of Control structure

• Many unnecessary disturbances and noise signals from outside
the system can be rejected.

• The change in the performance of the system due to parameter variations
is reduced.

• The steady-state error of the system can be relatively small.

Event and Event Handling
• HTML events are "things" that happen to HTML elements.

• When JavaScript is used in HTML pages, JavaScript can "react" on these
events.

HTML Events
• An HTML event can be something the browser does, or something a user

does.

• Here are some examples of HTML events:

• An HTML web page has finished loading

• An HTML input field was changed

• An HTML button was clicked

• Often, when events happen, you may want to do something.

• JavaScript lets you execute code when events are detected.

• HTML allows event handler attributes, with JavaScript code, to be added
to HTML elements.

Event handlers can be used to handle and verify user input, user actions,
and browser actions:

1. Things that should be done every time a page loads
2. Things that should be done when the page is closed
3. Action that should be performed when a user clicks a button
4. Content that should be verified when a user inputs data

Many different methods can be used to let JavaScript work with events:

1. HTML event attributes can execute JavaScript code directly
2. HTML event attributes can call JavaScript functions
3. We can assign your own event handler functions to HTML elements
4. We can prevent events from being sent or being handled
And more ...

• The change in the state of an object is known as an Event. This process of
reacting over the events is called Event Handling.

• Thus, JS handles the HTML events via Event Handlers. For example, when a
user clicks over the browser, add is code, which will execute the task to be
performed on the event.

Purpose of Event Handling
• Event handlers can be used to handle and verify user input, user actions,
and browser actions: Things that should be done every time a page loads.

• Things that should be done when the page is closed. Action that should be
performed when a user clicks a button.

Unit-3

JDBC

Content

JDBC Fundamentals

Establishing Connectivity

Working with Statements

Creating and Executing SQL Statements

Result set Objects

JDBS Fundamentals
JDBC stands for Java Database Connectivity. JDBC is a Java API to connect
and execute the query with the database.

There are four types of JDBC drivers:
JDBC-ODBC Bridge Driver,
Native Driver,
Network Protocol Driver, and
Thin Driver

Fundamental Steps in JDBC
Import JDBC packages.
Load and register the JDBC driver.
Open a connection to the database.
Create a statement object to perform a query.
Execute the statement object and return a query resultset.
Process the resultset.
Close the resultset and statement objects.
Close the connection.

We can use JDBC API to access tabular data stored in any relational database.
By the help of JDBC API, we can save, update, delete and fetch data from the
database. It is like Open Database Connectivity (ODBC) provided by
Microsoft.

Uses of JDBS

We can use JDBC API to handle database using Java program and can
perform the following activities:

1. Connect to the database
2. Execute queries and update statements to the database
3. Retrieve the result received from the database.

API
API (Application programming interface) is a document that contains a
description of all the features of a product or software. It represents
classes and interfaces that software programs can follow to communicate
with each other. An API can be created for applications, libraries, operating
systems, etc.

Java Database Connectivity with MySQL
To connect Java application with the My SQL database, we need to
follow 5 following steps.
Driver class: The driver class for the mysql database
is com.mysql.jdbc.Driver.
Connection URL: The connection URL for the mysql database
is jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is
the database, localhost is the server name on which mysql is running,
we may also use IP address, 3306 is the port number and sonoo is
the database name.
Username: The default username for the mysql database is root.
Password: It is the password given by the user at the time of
installing the mysql database. In this example, we are going to use
root as the password.

Establishing Connectivity and
Working with Connection Interface

• Java Database Connectivity (JDBC)
A common programming interface writing programs that access information

stored in

1. Databases,

2. Spreadsheets, and

3.other data sources

By using the JDBC interface,
1.Java programmers can request a connection with a database,

2.Send query statements using SQL

3.Receive the results for processing.

Java runs on many different hardware platforms and operating systems,

1. Developers can use JDBC to write applications
2. Access data across incompatible database management system

running on varied platforms.

Fundamental Steps in JDBC:-
1.Import JDBC packages.
2.Load and register the JDBC driver.
3.Open a connection to the database.
4.Create a statement object to perform a query.
5.Execute the statement object and return a query resultset.
6.Process the resultset.
7.Close the resultset and statement objects.
8.Close the connection.

JDBS Connections Interface

The Connection interface helps to establish a connection with the
required database. Other than establishing connection, it provides lot of
functionality including transaction management,
maintaining database sessions and creating SQL statements.

Some of the commonly used methods of connection interface are as
follows.
• void close(): This method closes database connection associated with
Connection’s object and releases JDBC resources.
• Statement create Statement(): This method creates a Statement object
which is used to send SQL statement to the database. It is usually used
when SQL statement without parameters is to be executed.

https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/servlet/servlet-with-mysql-database/jdbc

• Callable Statement prepare Call (String sql): This method creates an
instance of Callable Statement which is used to handle database stored
procedures.
• Prepared Statement prepare Statement (String sql): This method
creates Prepared Statement object which is used to create SQL statement
specified in string sql. It is usually used when parameterized SQL statement
is to be executed.

Working with statements

• The JDBC Statement, Callable Statement, and Prepared Statement
interfaces define the methods and properties that enable you to send SQL
or PL/SQL commands and receive data from your database.

• They also define methods that help bridge data type differences between
Java and SQL data types used in a database.

• The statement interface is used to create SQL basic statements in Java it
provides methods to execute queries with the database.

• There are different types of statements that are used in JDBC as follows:
Create Statement. Prepared Statement

Creating and Executing SQL Statement

In general, to process any SQL statement with JDBC, you follow these steps:

• Establishing a connection.

• Create a statement.

• Execute the query.

• Process the ResultSet object.

• Close the connection.

• The JDBC Statement, CallableStatement, and PreparedStatement
interfaces define the methods and properties that enable you to
send SQL or PL/SQL commands and receive data from your database.

• They also define methods that help bridge data type differences between
Java and SQL data types used in a database

Executing SQL on the Connection involves two further objects:
•we create a Statement object, to which we pass the SQL to be executed and
set any required options;
•we read the result of the query via a ResultSet object.

Creating a Statement object is simple once we have our Connection:
Connection c = createConnection();
Statement st = c.createStatement();

Then, to execute a simple SQL statement and get the corresponding result,

int id = ... get ID from somewhere ...
String sql = "SELECT Name FROM Users WHERE Id = " + id;
ResultSet rs = st.executeQuery(sql);
// ... read from result set ...

Working with Result Set Object
• The SQL statements that read data from a database query, return the data

in a result set.

• The SELECT statement is the standard way to select rows from a database
and view them in a result set.

• The java.sql.ResultSet interface represents the result set of a database
query.

The methods of the ResultSet interface can be broken down into three
categories −

• Navigational methods − Used to move the cursor around.

• Get methods − Used to view the data in the columns of the current row
being pointed by the cursor.

• Update methods − Used to update the data in the columns of the current
row. The updates can then be updated in the underlying database as well.

Type Description

ResultSet.TYPE_FORWARD_ONLY The cursor can only move forward in the result set.

ResultSet.TYPE_SCROLL_INSENSITIVE The cursor can scroll forward and backward, and
the result set is not sensitive to changes made by
others to the database that occur after the result
set was created.

ResultSet.TYPE_SCROLL_SENSITIVE. The cursor can scroll forward and backward, and
the result set is sensitive to changes made by others
to the database that occur after the result set was
created.

Type of ResultSet

Concurrency of ResultSet

Concurrency Description

ResultSet.CONCUR_READ_ONLY Creates a read-only result set. This is the default

ResultSet.CONCUR_UPDATABLE Creates an updateable result set.

Viewing a Result Set
The ResultSet interface contains dozens of methods for getting the data of the
current row.
There is a get method for each of the possible data types, and each get method
has two versions −
One that takes in a column name.
One that takes in a column index.

Updating a Result Set
The ResultSet interface contains a collection of update methods for updating the
data of a result set.
As with the get methods, there are two update methods for each data type −
One that takes in a column name.
One that takes in a column index.

Unit-4

JSP

Content

Java Server Pages

HTTP and Servlet Beans

Problem with Servlet

Anatomy of a JSP Page

JSP Processing

MVC

Setting up the JSP Environment

Implicit JSP Objects

Error Handling

Debugging

Sharing Data Between JSP Pages

Requests and Users

Database Access

Introduction to Java Server Pages

• JSP technology has facilitated the segregation of the work of a Web
designer and a Web developer.

• JavaServer Pages (JSP) is a Java standard technology that enables you to
write dynamic, data-driven pages for your Java web applications.

• JSP is also closely related to JSF (JavaServer Faces), a Java specification for
building MVC (model-view-controller) web applications.

• JSP is a relatively simpler and older technology than JSF, which is the
standard for Java web frameworks like Eclipse Mojarra, MyFaces, and
PrimeFaces.

• JSP used as the frontend for older JSF applications, Facelets is the
preferred view technology for modern JSF implementations.

https://www.javaworld.com/article/3322533/enterprise-java/what-is-jsf-introducing-javaserver-faces.html
https://javaserverfaces.github.io/
https://javaee.github.io/tutorial/jsf-facelets.html

• A simple JSP page (.jsp) consists of HTML markup embedded with JSP
tags.

• When the file is processed on the server, the HTML is rendered as the
application view, a web page.

•The embedded JSP tags will be used to call server-side code and data.

•JSP pages must be deployed inside a Java servlet container. In order to
deploy a Java web application based on JSP and servlets.

• We will package .jsp files, Java code, and application metadata in a .war
file, which is a simple .zip file with a conventional structure for web
applications.

HTTP and Servlet Basics
• A servlet is a Java class that runs in a Java-enabled server.

• An HTTP servlet is a special type of servlet that handles an HTTP request
and provides an HTTP response, usually in the form of an HTML page.

• The most common use of WebLogic HTTP Servlets is to create interactive
applications using standard Web browsers for the client-side presentation.

• While WebLogic Server handles the business logic as a server-side process.
WebLogic HTTP Servlets can access databases, Enterprise JavaBeans,
messaging APIs, HTTP sessions, and other facilities of WebLogic Server.

Servlet Development

a. Programmers of HTTP servlets utilize a standard API from
JavaSoft, javax.servlet.http, to create interactive applications.

b. HTTP servlets can read HTTP headers and write HTML coding to
deliver a response to a browser client.

c. Servlets are deployed on WebLogic Server as part of a Web
Application. A Web Application is a grouping of application
components such as servlet classes, JavaServer Pages (JSP), static
HTML pages, images, and security.

The Problem with Servlets

• In the beginning, servlets were invented, and the world saw that they
were good.

• Dynamic web pages based on servlets executed quickly, could be moved
between servers easily, and integrated well with back-end data sources.

• Servlets became widely accepted as a premiere platform for server-side
web development.

• However, the commonly-used simple approach to generating HTML
content, having the programmer write an out.println() call per HTML line,
became a serious problem for real servlet use.

• HTML content had to be created within code, an onerous and time
consuming task for long HTML pages.

• In addition, content creators had to ask developers to make all content
changes. People searched for a better way.

The Anatomy of a JSP Page

• A JSP page is simply a regular web page with JSP elements for generating
the parts of the page that differ for each request.

• Everything in the page that is not a JSP element is called template text .

• Template text can really be any text: HTML, WML, XML, or even plain text.

• Since HTML is by far the most common web page language in use today,
most of the descriptions and examples in this book are HTML-based, but
keep in mind that JSP has no dependency on HTML; it can be used with
any markup language.

• Template text is always passed straight through to the browser.

•When a JSP page request is processed, the template text and the
dynamic content generated by the JSP elements are merged, and the
result is sent as the response to the browser.

• There are three types of elements with JavaServer
Pages: directive, action, and scripting elements.

JSP Processing

• The web server recognizes that the HTTP request is for a JSP page and
forwards it to a JSP engine.

• This is done by using the URL or JSP page which ends with .jsp instead of
.html. The JSP engine loads the JSP page from disk and converts it into a
servlet content.

• A JSP page cannot be sent as-is to the browser; all JSP elements must first
be processed by the server.

• The JSP container is often implemented as a servlet configured to handle
all requests for JSP pages.

• A JSP container is responsible for converting the JSP page into a servlet
(known as the JSP page implementation class) and compiling the servlet.

MVC

A Design Pattern

Controller -- receives user interface input, updates data model

Model -- represents state of the world (e.g. shopping cart)

View -- looks at model and generates an appropriate user interface to
present the data and allow for further input

• The Model-View-Controller (MVC) is an architectural pattern that
separates an application into three main logical components: the model,
the view, and the controller.

• MVC is one of the most frequently used industry-standard web
development framework to create scalable and extensible projects.

MVC is one of the most frequently used industry-standard web development
framework to create scalable and extensible projects.

MVC provides the following features −

1. Ideal for developing complex but lightweight applications.
2. Provides an extensible and pluggable framework, which can be easily
replaced and customized.
3. Utilizes the component-based design of the application by logically dividing it
into Model, View, and Controller components.
4. This enables the developers to manage the complexity of large-scale projects
and work on individual components.
5. MVC structure enhances the test-driven development and testability of the
application.

Setting up the JSP Environment
• To work on JSP and create dynamic pages, you will need an environment

where you can develop and run web applications built using JSP.

• An environment is basically a set of all the software and tools needed to
create dynamic web pages, test them, and eventually run them in a virtual
client-server.

The environment setup for JSP mainly consists of 3 steps:

• Setting up the JDK.

• Setting up the webserver (Tomcat).

• Starting tomcat server.

Implicit JSP Objects

• Implicit objects are a set of Java objects that the JSP Container makes
available to developers in each page.

• These objects may be accessed as built-in variables via scripting elements
and can also be accessed programmatically by JavaBeans and Servlets.

• Implicit objects are a set of Java objects that the JSP Container makes
available to developers in each page.

• These objects may be accessed as built-in variables via scripting elements
and can also be accessed programmatically by JavaBeans and Servlets.

Error Handling and Debugging

Error Handling
• Error handling refers to the anticipation, detection, and resolution of

programming, application, and communications errors.

• Specialized programs, called error handlers, are available for some
applications. Such an error can occur in syntax or logic.

• Error handling is important because it makes it easier for the end users of
your code to use it correctly.

• Another important issue is that it makes your code easier to maintain.

• Syntax errors, which are typographical mistakes or improper use of special
characters, are handled by rigorous proofreading.

• Logic errors, also called bugs, occur when executed code does not
produce the expected or desired result. Logic errors are best handled by
meticulous program debugging.

Debugging

• Debugging is the process of detecting and removing of existing and
potential errors (also called as 'bugs') in a software code that can cause it
to behave unexpectedly or crash.

• To prevent incorrect operation of a software or system, debugging is used
to find and resolve bugs or defects.

The basic steps in debugging are:

• Recognize that a bug exists.

• Isolate the source of the bug.

• Identify the cause of the bug.

• Determine a fix for the bug.

• Apply the fix and test it.

A debugger is a tool that is typically used to allow the user to view the
execution state and data of another application as it is running

Difficulties in Debugging:-

1. Debugging itself is a very difficult process because of the involvement
of humans.

2. Another reason due to which it is considered as difficult because it
consumes a large amount of time and resources too.

3. Debugging is twice as hard as writing the code in the first place.

Debugging Needed For:-

1. To prevent incorrect operation of a software or system, debugging is used to
find and resolve bugs or defects.

2. When the bug is fixed, then the software is ready to use. Debugging tools
(called debuggers) are used to identify coding errors at various development
stages.

3. In a large program that has thousands and thousands of lines of code,
the debugging process can be made easier by using strategies such as unit tests,
code reviews and pair programming.

Sharing Between JSP Pages
• When we use servlets for request processing and JSP pages to render the

user interface, we often need a way to let the different components
access the same data.

• The model recommend is having the servlet create beans and pass them
to a JSP page for display.

• To the JSP page, the bean appears as a request scope variable.

• It can therefore obtain the bean using the <jsp:useBean> action and then
access the properties of the bean as usual, in this case
using <jsp:getProperty>

• The application scope is just a JSP abstraction
of javax.servlet.ServletContext attributes.

• The request and session scopes are JSP abstractions for attributes
associated
with javax.servlet.ServletRequest and javax.servlet.http.HttpSession,
respectively.

Request

• The JSP request is an implicit object of type HttpServletRequest i.e.
created for each jsp request by the web container.

• It can be used to get request information such as parameter, header
information, remote address, server name, server port, content type,
character encoding etc.

• A client is the requesting program or user in a client/server relationship.

• For example, the user of a Web browser is effectively making client
requests for pages from servers all over the Web.

• The computer handling the request and sending back the HTML file is a
server.

Users

• Any real application consists of more than a single page, and multiple
pages often need access to the same information and server-side
resources.

• When multiple pages are used to process the same request, for instance
one page that retrieves the data the user asked for and another that
displays it.

• In an application in which the user is asked to provide information in
multiple steps, such as an online shopping application.

• There must be a way to collect the information received with each request
and get access to the complete set when the user is ready.

Database Access
Database from a JSP Pages
Basically these actions are used to provide the following features:

• Using a connection pool for better performance and scalability.

• The features are to support the queries, updates, and insertion process.

• To handle the most common data-type conversions.

• To Support a combination of databases.

Unit-5

Java Beans

JavaBeans Fundamentals

• A Java Beans is a reusable software component that can be manipulated
visually in a builder tool.

• A software component model.

• Software components are self-contained software units developed
according to the motto.

• Developed them once, run and reused them everywhere.

A Java Bean is an ordinary java class that confirms the following rules:-

1. It provides a default, no-argument constructor.

2. It should be serializable and implement the

Serializable interface.

3. It may have a number of properties which can be read or
written.

4. It may have a number of "getter" and "setter" methods for

accessing properties.

Advantages of Java Beans:-
1. Beans is platform independent, that means it can be run anywhere.

2. Beans can work in different local platforms.

3. Methods, properties and events of Beans can be controlled.

4. It is easy to configure Java beans

5. A bean can both receive and create events

6. Configuration settings of a bean can be stored persistently and
can be retrieved any time

How to write a java bean using coding standards

public class StudentsBean implements java.io.Serializable

{

private String firstName = null; private String lastName = null;

public StudentsBean() { } public String getFirstName()

{

return firstName;

}

public String getLastName()

{

return lastName;

}

public void setFirstName(String firstName)

{

this.firstName = firstName;

}

public void setLastName(String lastName)

{

this.lastName = lastName; }

}

Starting the Bean Box

• When you start the BeanBox, you'll see three windows:

– ToolBox window

– BeanBox window

– Properties window

• The ToolBox window displays the JavaBeans that are currently installed
in the BeanBox.

• The BeanBox window itself appears initially as an empty window.

• the Properties window, displays the current properties for the
selected Bean.

JAR Files
• A JAR (Java Archive) is a package file format typically used to aggregate

many Java class files and associated metadata and resources (text, images,
etc.)

• JAR files are archive files that include a Java-specific manifest file.

• They are built on the ZIP format and typically have a . jar file extension.

• The JAR file contains the TicTacToe class file and the audio and images
directory, as expected.

• The output also shows that the JAR file contains a default manifest file.

• META-INF/MANIFEST. MF, which was automatically placed in the archive
by the JAR tool.

Introspection

• Builder tools typically provide a property sheet where one can

conveniently set the properties of a JavaBean component.

• In order to provide this service a builder tool needs to examine the
component for its features (=properties, events and methods).This
process is referred to as “introspection”.

• Introspection is the automatic process of analyzing a bean's design
patterns to reveal the bean's properties, events, and methods.
This process controls the publishing and discovery of bean
operations and properties.

• To obtain information about a specific JavaBean one can use the static
getBeanInfo() method of the Introspector class.

• This method returns an instance of the BeanInfo class, which describes all
features a JavaBean exposes.

• Use of this method is shown in the following code fragment:

FontSelector fs = new FontSelector ();

BeanInfo bi = Introspector . getBeanInfo (fs. getClass ());

BeanInfo Interface

A bean implementor who wishes to provide explicit information
about their bean may provide a BeanInfo class that implements this
BeanInfo interface and provides explicit information about the
methods, properties, events, etc, of their bean.

Developing a simple Bean

Create a New Bean: Here are the steps that you must follow to create a
new Bean:

• Create a directory for the new Bean.

• Create the Java source file(s).

• Compile the source file(s).

• Create a manifest file.

• Generate a JAR file.

• Start the BDK.

• Test.

• In computing based on the Java Platform, JavaBeans are classes that
encapsulate many objects into a single object (the bean).

• They are serializable, have a zero-argument constructor, and allow access
to properties using getter and setter methods.

• According to Java white paper, it is a reusable software component.

• A bean encapsulates many objects into one object so that we can access
this object from multiple places.

• A java bean is a class that is serializable, has a no-argument constructor,
and uses getters and setter methods for its member fields.

• Its used in Java Enterprise Apps to store business logic data.

•A JavaBean is a specially constructed Java class written in the Java and
coded according to the JavaBeans API specifications.

Connecting to DB
• To connect to an existing Java DB database: In the Services window, right-

click the Databases node and choose New Connection.

• In the Locate Driver step of the New Connection wizard, choose one of the
following Java DB drivers from the drop-down menu: Java DB (Embedded).

• To connect to SQL Server database create new documentation by clicking
Add documentation and choosing Database connection.

• On the connection screen choose SQL Server as DBMS. Provide database
connection details: Host - provide a host name or address where
a database is on.

• There are 5 steps to connect any java application with the database
using JDBC. These steps are as follows:Register the Driver class

1. Create connection
2. Create statement
3. Execute queries
4. Close connection

• Within the Databases node you can do the following:
1. Connect to a database.
2. View current database connections.
3. Select or add a driver for your database.
4. Enter SQL statements and see the results immediately.
5. Run SQL scripts on a connected database.
6. Migrate table schemas across databases from different vendors.

Thank You

